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1 Derivation for Point Charges

Define a space-filling grid of point charges ¢;. Points with no charge are
represented as point charges with ¢; equal to zero. Assume the nonzero
ones are all at finite distance from the origin. Then the potential at point i
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where r;; is the distance between points i and .
Now define another collection of point charges on the same grid but
with different values, denoted by using capital letters
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Form the two double sums
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Since r;; = r;;, and the sum is symmetric, it follows that
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This is the Greeen reciprocity theorem.?

2 Derivation for Continuous Distributions

With dg = pi(r)dr replacing ¢; and dQ = p,(r)dr replacing Q;, eq.(4) is
equivalent to the continuous charge distribution expression

f p1(0)Va(r)dr = f p2(r)Vi(r)dr (5)

where V| corresponds to the v; in eq.(1) and V, to the V; in eq.(2). That is,
the subscript 1 in eq.(5) corresponds to the lower-case letters in Section 1
and the subscript 2 in eq.(5) corresponds to the upper-case letters in Sec-
tion 1. The index i is replaced by the spatial location vector r, and it is still
assumed that the charge densities are nonzero only for finite distance from
the origin.?

3 Experiments Using Two Conductors

Consider two initially uncharged conductors A and B of any shape and any
distance apart (except not touching, of course).

First do an experiment corresponding to the charge distribution and
potential denoted by subscript 1 in eq.(5). In this first experiment, charge
g # 0 is added to B, but A is left uncharged (i.e., the integral of p; over
equipotential surface A would produce a net charge of zero, but the integral
of p; over the equipotential surface B would produce a net charge g.)

Second, without moving the conductors A and B or changing their ori-
entations, do a different experiment corresponding to the charge distribu-
tion and potential denoted by subscript 2 in eq.(5). Again begin with both
conductors uncharged. In this second experiment, charge ¢ # 0 is added

!See Section 3-2 of Panofsky and Phillips [3]
2See Problem 3.50 of Griffiths [1] and Problem 1.12 of Jackson [2].



to A, but B is left uncharged (i.e., the integral of p, over equipotential sur-
face A would produce a net charge of g, but the integral of p, over the
equipotential surface B would produce a net charge zero.)

The integral on the left side of eq.(5) then yields

fpl(l')vz(l')dT =0Var +qVp = qVm (6)

and the integral on the right side of eq.(5) yields

fpz(l')Vl (r)dt = gVa1 + 0Vp = qVa (7)

From the Green reciprocity theorem eq.(5), the two integrals in eqn.(6, 7)
are equal. Since ¢ is assumed to be the same in the two experiments, the
result is

Var = Va (8)

The potential on uncharged conductor A when charge ¢ is added to con-
ductor B (as in experiment 1) is the same as the potential on uncharged
condutor B when charge ¢ is added to conductor A (as in experiment 2).
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